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ABSTRACT 

For any topological space T, S. Mr6wka has defined Exp (T) to be the smallest 
cardinal r (if any such cardinals exist) such that T can be embedded as a closed 
sutset of the product N K of !c copies of N (the discrete space of cardinality 
No). We prove that for Q, the space of the raticnals with the inherited topology, 
Exp (Q) is equal to a certain covering number, and we show that by modifying 
some earlier work of ours it can be seen that it is consistent with the usual 
axioms of set theory including the choice that this number equal any uncoun- 
table regular cardinal less than or equal to 2~o. Mr6wka has also defined 
and studied the class ,aft' = {x: Exp (Nr) =x  } where N x is the discrete space 
of cardinality r. It is known that the first cardinal not i n~ /mus t  not only be 
inaccessible but cannot even belong to any of the first to Mahlo classes. How- 
ever, it is not known whether every cardinal below 2 ~o is contained in ~t ' .  
We prove that if there exists a maximal family of almost-disjoint subsets of N 
of cardinality r, then r e,.//, and we then use earlier work to prove that if it 
is consistent that there exist cardinals which are not in the first co Mahlo 
classes, then it is consistent that there exist such cardinals Ixlow 2~o and 
that,6( nevertheless contain all cardinals no greater than 2•o. Finally, we 
consider the relationship between,at and certain "large cardinals", and we 
prove, for example, that if/z is any normal measure on a measurable cardinal, 
then/t(,/~') = O. 

1. Introduction and notation 

Let N be the set o f  na tura l  numbers ,  let N be the topological space obtained by 

put t ing  the discrete topology on N, and for any cardinal  x let N ~ be the space 

obta ined by taking a product  o f  x copies of  N with the usual  product  topology. 

S. Mr6wka I-8 3 had defined a topological  space T t o  be N-compact  iff there exists 

a card ina l  x such that  T can be embedded as a closed subset of  N ~, and for such 

spaces T, he has defined Exp(T) to be the least cardinal  x for which the embedding 

exists. 
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In particular, let Q be the set of rational numbers, and let Q be Q with the 

inherited topology. Mr6wka [8, p. 184-185] mentions that Q is N-compact and 

that 

No < Exp (Q) < 2 ~ . 

In this paper we shall show that this is close to the best possible. That is we shall 

show that Exp (Q) is equal to a certain covering number which we shall define and 

which will be related to the number of nowhere dense sets needed to cover the 

real line. Then, using a slight modification of an earlier construction of ours [3], 

we shall prove that it is consistent that this covering number be any regular 

uncountable cardinal no greater than 2 ~~ 

We shall also consider a similar problem p oposed by Mr6wka [7]. For any 

cardinal x let N~ be the discrete space of cardinality r. Then Mr6wka has defined 

the class 
aa' = {x : Exp(N~) = x} 

and has asked about its extent. Mr6wka has noted that ~ contains only cardinals 

below the first measurable cardinal and that any cardinal in this range which is 

the cardinality of the power set of  some cardinal is in d / .  Mycietski [11] has 

proven that the first cardinal not in ~a' (if there exists such a cardinal) must be 

inaccessible, and Mr6wka [10] has extended this to show that the first such 

cardinal cannot be in any of the first co Mahlo classes of inaccessible cardinals. 

(A cardinal K is called inaccessible iff it is a limit cardinal but is not the union of 

fewer than x smaller cardinals; we shall define Mahlo classes in w It is known to 

be consistent with the axioms of set theory that there do not exist any uncountable 

inaccessible cardinals.) We shall extend this by proving that, if it is consistent 

that there exist such Mahlo cardinals, then it is also consistent that 

there exist such cardinals in ~ /which  are strictly below the continuum. We shall 

do this by showing first that it is possible to construct the desired embedding of 

N~ into N" with the aid of a maximal family of cardinality x of almost-disjoint 

(having finite intersection) subsets of N, and then referring to some earlier work 

of ours [2] on the consistency of the existence of such families. 

We shall conclude with some brief remarks vis-b.-vis .art' and "large" cardinals. 

We shall note that the original interpretation [7] of .,a' as the class of "strongly" 

nonmeasurable cardinals is correct in that if there exists a measurable cardinal, 

then d / i s ,  in a certain sense, a very small subset of the cardinals below this measur- 



386 STEPHEN H. HECHLER Israel J. Math., 

able cardinal. We shall do this by characterizing those strongly inaccessible 

cardinals which are in J t .  

The major proofs in this paper will be combinatorial or topological in nature 

and will be essentially self-contained. The theorems involved will tell us that the 

existence of certain desired embeddings will be implied by, or equivalent to, the 

existence of  certain families. We will refer to earlier work of ours and others to 

obtain, either directly or with only slight modifications, existence and independence 

results concerning the families and therefore the embeddings in question. 

We begin with some notation. As usual we shall assume the axiom of  choice 

throughout, and we shall identify cardinals as initial ordinals. 

For any sets A and B and any function f we denote the set-of functions from A 

into B by AB, the set {a c A  : a CB} by A -  B, and the set {f(a) : a ~ A} by fFA]. 

As we already mentioned, we shall use N and Q to denote the sets of  natural 

numbers and rational numbers respectively, and we shall use R to denote the set 

of all real numbers and I to denote R - Q. We shall also use R and Q to denote 

R and Q with the usual topologies, and we shall use e to denote 2 ~~ 

Finally, because most of the consistency proofs in the literature are carried out 

with respect to this theory, we shall work within Zermelo-Fraenkel set theory 

including choice, and we shall denote this theory by ZFC. A brief description of 

this theory can be found in 1-1, Chapter 2]. 

2. Covering faJfilies and Exp(Q) 

As we shall be interested in closed subsets of  I, we define a family 

= { F _ c I : F i s c l o s e d i n R }  

which will remain fixed throughout this section. Next, we define a family ff _ ~" 

to cover I iff u ~  = I, and we define such a family to strongly cover I iff for 

every irrational number r there exists a set G ~ ~ such that r is a two-sided limit 

point in G. We then define the covering nu~.ber of I (which we shall denote by 

Coy(l)) to be the least cardinal x such that there exists a family ~ _  ~- of  

cardinality K which covers I. We shall need: 

LEMMA. I f  K is the covering number of I, then there exists a fami ly  . ~  c ~" 

of cardinality ~ which strongly covers I. 

PROOF. Let ~ ~_ ~ be a family of cardinality x which covers I and for each 

G E ff define 
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~Ca = {r ~ G : r is not a two-sided limit point of  G}. 

I t  is well known that Ca must be at most countable. Thus we may choose a count- 

able family ~ga ~ ~ such that for each r e CG there exists a D ~ <~'G in which r is a 

two-sided limit. Now let 

,~ = 5e L.) LP{~a : G ~ fr �9 

Using these notions, we may state and prove the main theorem of  this section. 

TREORE~ 1. t Exp(Q) is equal to the covering number of  I. 

PROOF. We first prove that Cov (I) < Exp (Q). Thus let 2 be any cardinal such 

that there exists an embedding ~ of  Q into N ~ whose range, which we denote 

by C, is closed. We may think of N a as having XN as its set of  elements, and for 

each ordinal ~ < 2 we let ~ E eN be the continuous projection function of  

defined by 

~b,(q) = ~(q) (a) for all q G Q. 

We then extend each q~ to a continuous function ~b~* defined on an open subset 

of  R by setting 

q~*(r) = n i f f 3 p ,  q e a [ p < r < q A V s s Q ( p < s < q ~ ( s ) = n ) ] .  

Because the domain of  each ~b* is open and contains Q, each set 

F , = I - d m ( ~ * ) e o ~ ' .  

Therefore, to complete this part  o f  our proof  it is sufficient to prove that 

{F~ :~ < ~.} covers I.  But suppose otherwise, and let r be any member of  

I - W,<a F~. Then r must belong to the domain of  each ~b*, so we may define a 

point f ~  "N by setting 

f (~)  = ~b*(r) for all ~ < 2. 

I" S. Mr6wka has noted in a private communication that this theorem may b. ~ proven from 
his work by using topological properties of certain compactifications. With his permission, we 
present his proof. "Let R* be the extended reals [--o0, + oo]. Then Coy (I) is the smallest 
cardinal x such that R* -- Q is the union of x compact sets. On the other hand, by (3.3) and (4.1) 
in [7], we have Exp(Q) - d e f  ~,(Q) = the smallest cardinal x such that Bo Q - Q is the uni3n 
of r closed G~ - -  subsets of BoQ. Now, BQ is 0-dimensional, hence BoQ = BQ [7, p. 598]. 
Furthermore, R* is a compactification of Q (such that every compact subset of R * - Q  is a closed 
G~-subset of R*); consequently, considering the canonical map of flQ onto R*, we obtain the 
required map immediately." Our proof will be more combinatorial and will be essentially self- 
contained. 
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We shall prove that f,  while not a member of  r  is a member of  its closure, 

thus contradicting our hypothesis that r  is closed. We shall need to know if  G 

is any open set in aN containing f ,  then 

(*) 3p, q e Q [p < r < q/X, Vs e Q(p < s < q --* ~(s )  ~ G)]. 

To prove this we recall that by the definition of  the product topology, there exists 

a finite set A __ 2 such that 

{O e aN : ~ e A --* g(~) = f(c0} _ G. 

From the definition of  the ~* there must exist for each ~ �9 A rationals p, < r < q, 

such that 

p, < s __< q~ ~ r = r for all s e Q. 

Hence, if we set 

p = max({p, : ~eA}) and q = min({q~ : ~eA},  

then we have p < r < q and 

p < s < q --* r = r = f(~) for all ~ e A and s e Q. 

But this, in turn, implies that for any s e Q we have 

p < s < q ~ ~(s) eG.  

This tells us immediately that f is an accumulation point of  ~ [-Q]. Now let s 

be any point in Q and let 

F =  { t E Q  : ] t -  r I <= Is- r]/2}. 

Because �9 is an embedding and F is a closed (in Q) subset of  Q not containing s, 

there must be an open set G in N a which contains ~(s) and is disjoint from ~[F] .  

But by (*), f must be an accumulation point of  ~ [F] ,  so f cannot equal ~(s). 

Therefore, since s was an arbitrary point in Q, f cannot belong to tl)[Q]. 

To prove that E x p ( Q ) <  Cov(l) ,  we shall construct an embedding ~ by con- 

structing the necessary ~b,. We begin by setting x = Coy (I) and choosing a family 

.,~ ~ ~ of  cardinality x which strongly covers I. For  convenience, we index aft 

with ~: - to, i.e. we set 

9ff = {n= : c o <  ~ <  x}. 

For finite ordinals n we define our ~b, in such a way as to "divide"  Q into smaller 

and smaller intervals. Since, for the purposes of  continuity, our division points 
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must be at irrationals, we shall define them in terms of the irrational n. Thus for 

any finite ordinal n and any q ~ Q we set 

I" 2 . m i n ( { m ~ N : q < n + m / ( n + l ) } )  for n < q ,  
r = .~ 

L-l+2"min{m~N:n<q+m/(n+l)}) otherwise. 

In defining the remaining r we shall use the H~. Since for every infinite ordinal 

< x the set H~ is a closed subset of R, its complement in R can be expressed as 

the union of a countable family 

~,r = {J~ : n e N }  

of disjoint open intervals. Using such a decomposition, we define 

r = n *-. q e J~ for all q e Q. 

Because all of  the intervals used in defining the ~b, have irrational endpoints, it 

is easily seen that all of the r are continuous and thus so is the function r from Q 

into N" which they generate. From a theorem of Mr6wka [8, Th. 2.1.c] it follows 

immediately that to prove that r is an embedding, it is sufficient to prove that for 

every point q e Q and every closed (in Q) set F not containing q, there is an 

such that r ~ r But this is obvious from the construction of {~b~ : ~ < o}. 

We complete our proof by showing that r is a closed embedding, i.e. that for 

e a c h f e * N  not in the range of  O, there exists an open set G in N * which contains 

f and is disjoint from the range of  r  So choose any such f, and let 

J = {cl (r 1 ( f (n))  : n < r 

where "c l "  is the closure operator taken with respect to R. Because the intervals 

in J become arbitrarily small, the set n J  can contain at most one point. We 

consider three cases. 

Case 1. The set n J  is empty. Then because J is a set of compact intervals 

there must exist m, n < r such that 

r x(f(m)) N ~b~" l ( f (n) )  = ~ .  
Thus the open set 

G = {g e '~N: g(m) = f ( m )  A g(n) = f ( n ) }  

contains f and is disjoint from (I)[Q]. 

Case 2. n~r contains a single point q which is rational. Since f is not in the 

range of  r  there is some a < ~ such that 
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f(~) :~ O(b)(a) = ~b~(q). 

is continuous so there must exist an n < co such that for any p e Q 

I P - q[ < 1/(n + 1) -~ t~(p)  = ~b~(q). 

Thus the open set we are looking for is 

G = {g ~ 'W : g(n) = f ( n )  A g(~t) = f(~)}. 

Case 3. n~" contains a single point r which is irrational. By our assumption 

on ,g' there is an 0t such that r is a two-sided limit point in H~. Thus r cannot be 

a limit point of J}m" In particular, there must exist an n < 09 such that 

,1~c.~ m {p  ~ Q : [p - r I < 1/(n + 1)} -- ~ .  

Then again we set 

G = {g e '~N : g(n) = f ( n )  A g(~) = f(ct)}. �9 

Although coy  (I) does not appear to be any easier to calculate than Exp(Q) 

itself, it is, in fact, easier to deal with because it is closely related in definition to 

the number of nowhere dense sets needed to cover R. Thus if we call this latter 

number Cov(R), then we have immediately 

N O < Cov(R) < N o + Cov(I) = C o v ( / )  = Exp(Q) < e. 

But it is known that in Cohen's models 1-1, I6] and in models satisfying Martin's 

axiom 16], we have Cov (R) -- c so in these models Exp (Q) -- c. Similarly, it is 

known that in Solovay's models where random reals are added [-14] we have 

Cov (R) = N~, and it is no t  hard to extend the proof to obtain C o v ( / ) =  N1. 

However, by extending a construction of  the author's we can obtain even more. 

THEOREM 2. It  is consistent with ZFC that Exp(Q) be any uncountable 

regular cardinal less than or equal to c. 

PROOF. In [3] we proved a similar theorem about Coy(R) and here it is only 

necessary to note that a very slight modification of that construction yields our 

present theorem. In particular, if we look at the construction in [3], we see that 

the nowhere dense sets we construct are complements of open sets and contain 

only those real numbers which are explicitly forced to be there by the presence of 

terms denoting them in the conditions. Thus it will be sufficient to exclude all 

terms denoting rationals from our conditions. Perhaps the simplest way to do this 

would be to add to 3.1.2.3" the additional clause (c): 
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p'lF t r (2. 

We leave the details to the interested reader. �9 

Since this paper was written, the author and S. Mr6wka have been able to prove 

that the cofinality of Exp (Q) must be uncountable and that, subject only to 

this restriction, it is consistent that Exp (Q) be any cardinal less than or equal 

to c. The proof will appear elsewhere [4]. 

3. Almost-disjoint families and the class ~ /  

As we noted in w Mycielski [11] has proven that the first cardinal not in d// 

must be inaccessible and that it is, therefore, consistent that d /  contain all 

cardinals. Furthermore, suppose we put the order topology on the ordinals and 

for any set S of ordinals, we use $ to denote its closure. Then, following Mahlo [5], 

given any class C of cardinals we define a new class 

M(C)  = : C(.4 u = 2)}, 

and for any ordinal g we define M,,(C) by setting: 

Mo(C ) = C, 

Mp+~(C) = M(Mp(C)), 
and 

Mx(C ) = U Ma(C) for limit ordinals 2. 
/J<Z 

Next, for the remainder of this section let 1[ be the class of all cardinals which are 

not weakly inaccessible. Then while Mycielski's theorem tells us only that the 

first cardinal not in ~ '  cannot be in lI, Mr6wka [10] has recently proven that 

this first cardinal cannot be in M~,(~). However, as Mr6wka notes [10, p. 1953, 

this does not necessarily give us complete information even about the cardinals 

below the continuum. We shall prove that it is consistent with ZFC that all cardi- 

nals up to the continuum belong to ~// even if for some g > co some of these 

cardinals are not in M~(/I). 

We begin by defining a family of subsets of N to be an almost-disjoint family 

iff it is infinite, each of its members is infinite, and the intersection of any two 

distinct members of it is finite. A maximal almost-disjoint family is then defined 

to be an almost-disjoint family which is not properly contained in any other 

almost-disjoint family. Using such families, we can mimic a construction due to 

Mr6wka [9, Th. 2] to obtain: 
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THEORFM 3. I f  there exists a maximal almost-disjoint family of cardinality 

x, then K~ .ar162 

PROOF. It is clearly sufficient to prove that N ~contains a closed discrete subset 

D of  cardinality ~. Let ~ be a maximal almost-disjoint family of  cardinality x, 

and, as in the proof  of  Theorem 1, index it with x - co, i.e. set 

o~- = {F, ~ N :co_<~_<tc}. 

We shall again think of  N ~ as having ~N for its set of  elements, and we shall need 

two auxiliary functions ~ and 0. For  qJ we may choose any bijection from the set 

of  all finite subsets of  N onto N - { I } ,  while 0 is to be the function defined for 

each infinite A ~ N and each n s N by 

O(a, n) = min (A - {o(a, m) : m < n}). 

(Thus O(A, n) is the nth smallest member of  A.) Using these, we define for each 

F ~ o~- a unique point fv ~ ~N by setting 

~10(F, ~ + 1) for ~<co ,  
for F = F,, 

L ~F(F n F~ otherwise. 

o = 

is the required discrete closed subset of  N ~ of  cardinality x. 

We note immediately that D has cardinality ~, so we need only find for each 

f E  ~N an open set Gf conta iningf  such that the set G s n D is finite. Thus choose 

a n y f s ~ N .  We note that every function g ~ D is completely determined by g[co], 

and we shall use this to define the set G s. We shall consider several cases. 

Case 1. f is not strictly increasing over 09. Then for some m < n < co we have 

f(n) <f(m),  and we may set 

G s = {g ~ ~N : g(m) = f(m) A g(n) = f(n)}. 

Case 2. For  some infinite ordinal ~ we have f(~) = 1. Since the only member 

of  D to have this property is f r ,  we may set 

G s - - ( g ~ N : g ( a ) =  1}. 

Case 3. f is strictlyi ncreasing over o and does not take on the value 1 at 

any infinite ordinal. Thus f[co] must be infinite, and, because ~" was chosen to 

be a maximal almost-disjoint family, there must exist an infinite ordinal a such 

that f[co] n F,  is infinite. Choose any point 
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n~(F~ ~f[~o]  - V- l ( f (~) )  

(this can be done because W-I (f(~)) is finite) and set 

Gf = {ge ~N : g(c 0 = f ( ~ )  A g(f- l (n))  = n}. [] 

Using this we may prove: 

THEOREM 4. If  for some ordinal ~ it is consistent with ZFC that there exist 

cardinals not in M~ (~), then it is also consistent with ZFC that there exist such 

cardinals below the continuum and that ~aff nevertheless contain all cardinals 

below the continuum. 

PROOF. Suppc se in some countable model of  ZFC for some ordinal ct we have 

a cardinal x~M~(~I). First, using Cohen's [1] original construction, we can 

obtain an extension of the model in which x is less than the continuum. Then 

using a construction due to the present author [3, Th. 3.2], we can again extend 

the model in such a way as to insure that there exist maximal almost-disjoint 

families of all uncountable cardinalities below that of the continuum. In this 

final model x will clearly be in ~//', but we must check to see that it has not also 

become a member of M~(~). This, however, follows from the fact that each of the 

extensions used satisfies what is usually referred to as the "countable chain condi- 

t ion",  and such extensions can be shown to preserve Mahlo classes. Finally, to 

avoid the use of countable models, the entire argument can be reframed in terms 

of  Boolean models [15]. [] 

We do not know whether or not it is a theorem of ZFC that every cardinal 

below c belongs to ~r We do know that even with respect to uncountable cardinals 

below c, the converse of  Theorem 3 is false. In particular, Solovay and Tennen- 

baun 1-15] have proven the relative consistency of Martins's axiom with the nega- 

tion of the continuum hypothesis, and Martin and Solovay [6] have shown that 

Martin's axiom implies that every maximal almost-disjoint family has cardinality 

e. Thus, although by Mycielski's theorem NI must be in ~ ,  it is consistent that 

there exist no maximal almost-disjoint families of cardinality N~. 

4. Large cardinals and the class 

We conclude with some general remarks concerning the extent of .At'. Let 

?/r be the class of  all cardinals, and let q / b e  the class of all cardinals which are 

t It has since been shown that if it is consistent that there exist cardinals not in M, it is 
also consistent that there exist such cardinals less than 2 ~o. 
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below the first measurable cardinal. Then ~ _ q/, and Mycielski's result imme- 

diately implies the consistency of J r  = ~/'. What is more surprising, however, is 

that d r  q/implies o / /=  ~ .  Restated, the existence of a measurable cardinal 

x implies the existence of a cardinal 2 < x which is also not in aa'. In fact, if x is 

any measurable cardinal and It is any normal measure (for the definition of normal 

measure see [-12]), then p(a#) =0. Thus, the existence of a measurable cardinal 

implies that, in a sense, ca' is a very small subset of q/. 

The above is best proven using the notion of weakly compact cardinals. Weakly 

compact were originally defined in terms of infinitary languages and are precisely 

those cardinals which Mr6wka I7, p. 604] defines as not being "strongly 

incompact". Silver [13], on the other hand, has proven that these cardinals can 

be characterized as the class of cardinals x which are strongly inaccessible and 

which have the further property that every tree of cardinality x which has fewer 

than x elements at each level has a branch of cardinality x. Using this, it is easy 

to prove that: 

THEOREM 5. I f  X is any  s trongly  inaccessible cardinal  in all, then tc ~ .J[ 

i f f  x is not weak ly  compact.  �9 

The fact that weakly compact cardinals cannot belong to dr' has long been 

known [7, p. 604], and a]method of proving this can be found in 1-9, p. 708]. 

Furthermore it has also long been known that if x is any measurable cardinal 

and # is any normal measure on x, then 

/~({2 < x : 2 is a weakly compact cardinal}) = 1. 

Thus, as we stated earlier, we obtain 

THEOREM 6. I f  all ~ ~/" then: 

1. .at[ ~ all, and 

2. I f  x is any  measurable  cardinal  and It is any  normal  measure on x, 

then It(all) = O. �9 

Mr6wka has pointed out in a private communication that the remaining half 

of Theorem 5 can also be proven directly from earlier results. He points out that 

a similar theorem holds for a classa//* which he has defined and studied 1-7, 9] (the 

theorem follows immediately from his remarks in I9, p. 706]), and then goes on to 

prove that strongly inaccessible cardinals in o//are in ~ iffthey are in ~ '*.  For the 

convenience of the reader, and again with his permission, we present this proof. 

The class a1r is defined to be the set of all cardinals x such that there exists 

an embedding of the discrete space N~ of cardinality x onto a closed subspace 
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o f  a p roduc t  space II ,<~ N ,  where each N ,  is a discrete space o f  cardinality 

I ct[ < ~. Clearly d / _  ~ / * ,  and Mr6wka  shows: 

TrIEOREM 7 (Mrdwka).  I f  K is any cardinal in all such that  2 < tc ~ 2 x < ~c 

then ~c e d / *  ~ ~c e Jl/ .  

PRooF. Since x e d / * ,  we have a closed embedding o f  the space N~ into 

H~<~ N~. But x and therefore each e < x belong to a//, so we know that each N~ 

can be embedded as a closed suspace of  N2. ~ Hence N~ can be embedded as a 

closed subspace o f  N ~<~2~ . But our  original condit ion on ~c implies that  

2 ~ <  ~ ~ : =  x 2 = to ,  so we are done. 
~ < / r  ~t "( Ir 
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